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MIXING OF SUPERSONIC JETS INCLUDING THE EFFECTS OF TRANSVERSE 

PRESSURE  GRADIENT USING DIFFERENCE METHODS 

by Anatole P. Kurkov 

Lewis Research  Center 

SUMMARY 

The  usual  boundary-  layer  equations  describing  the  steady- state mixing of parallel 
jets are supplemented by the  momentum  equation  in  the  direction  normal  to  the flow. 
This  allows  detailed  computation of the flow field in the  mixing  region  and  simultaneous 
computation of the  outer  inviscid flow. 

An explicit  and  an  implicit  finite  difference  schemes  have  been  developed  and  ap- 
plied  in  several  illustrative  examples.  The  examples  include  mixing of planar  and  axi- 
symmetric  supersonic  jets of different  composition with both  matched  and  unmatched 
static  pressures.  Numerical  results  were  compared with available  experimental  data 
obtained  for  the  unmatched-pressure  case. 

INTRODUCTION 

Traditionally, jet mixing  problems  are  solved  using  the  boundary-layer  equations. 
As  a result,  the  transverse  pressure  field  in  the  mixing  region is assumed  to  be uni- 
form. In the  case of a supersonic  combustor this assumption  may not always be justi- 
fied.  Significant pressure  gradients  can  be  induced as a result of combustion, or they 
can  be  created at the  injection  port i f  the  static  pressures of the  fuel  and air are not 
matched. In such  cases  the  transverse  momentum  equations  must be considered. 

Previously (refs. 1 and 2), a numerical  solution  that  incorporates  the  effects of the 
transverse  pressure  gradient was achieved by splitting  the  governing  equations  into a 
se t  of essentially  inviscid  equations  and a set of viscous  boundary-layer  equations. In 
the first set  of equations,  which  was  written  in the characteristic  coordinates,  viscous 
terms  were  treated as a perturbation. At each  point it was  necessary  to iterate between 
the  two se ts  of equations  to  match the two  flows. 



In the present  computational  scheme, all equations  are  differenced  in the same 
coordinate  system and the  variables  associated with viscous  and  inviscid  effects are de- 
termined  simultaneously. Two finite-difference  schemes,  an  explicit  and  an  implicit, 
were developed  and  evaluated. 

The  computer program was written  for the solution of free o r  confined supersonic 
jet  mixing.  Initially, at the origin,  the jets were  assumed  to have  uniform  properties 
and  the  turbulent  Prandtl  and  Schmidt  numbers were assumed  to be unity. Figure 1 
shows  the  general  configuration of the  jets;  geometry  can be either  planar or  axisym- 
metric. 

Y 

_ _ _  
X 

Figure 1. - Configuration of  jet. 

Computations  have  been  carried out for  planar  free  jet  mixing of hydrogen at Mach 
1.67, and air at Mach 2.5. Both, matched  and  unmatched  pressure  cases  were con- 
sidered.  Additional  cases  were  computed  for  the  purpose of comparison with the  theor- 
etical  and  experimental  results  from  the  literature. 

The  computational  scheme  described  in this report  represents  an  alternate  method 
to  the  usual  scheme  in which  the  inviscid  and  viscous flow fields a re  computed  separ- 
ately.  However,  in  case of reacting  jets,  the  later  method  can not predict  accurately 
the  effects of combustion on the flow field. Schemes  such as the one described  in this 
report  must  then  be  used. In case of purely  inviscid  flows  the  present  finite-difference 

* scheme,  in  comparison with the  method of characteristics, is easier  to apply to  the 
computation of ducted  flows that involve multiple  reflections  from the boundaries. 
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SYMBOLS 
- 
A 

Bj 

bj 

bo. 1, bl /2  

5 
cP 

Dj 

d j  

C 

E. F. G. 
J ’  J Y  J 

H 

hk 
J 

K 

M 

n 

An 

P 

q 

R 

RO 
S 

A s  

T 

U 

matrix whose element are a (eq. (31)) 

coefficient  in  eq. (24) 

matrix  element  defined by eq. (32) 

vector whose elements are b. (eq. (31)) 

coefficient  in  eq. (24) 

vector  element  defined by eq. (35) 

jet widths  used  in  eddy  viscosity  expression,  eqs. (36) and (37) 

coefficient  in  eq. (24) 

specific  heat at constant  pressure 

speed of sound 

defined by eq. (34) 

defined by eq. (33) 

defined by eqs. (29) 

total  enthalpy 

static  enthalpy 

J = 0 for  planar,  and J = 1 for  axisymmetric  geometry 

defined  by  eq. (21) 

Mach  number 

coordinate  normal  to  streamline 

grid  spacing  in  n  direction 

pressure 

velocity 

gas  constant 

universal  gas  constant 

streamline  coordinate 

grid  spacing  in s direction 

temperature 

velocity  component  normal  to  the  direction of the  shock 

j , k  

J 
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defined by eqs. (29) 

defined by  eq. (16) 

molecular weight for  specie k 
'j 

x, y rectangular  Cartesian  coordinates  for  planar  configuration; axial and  radial 

yJ 

wk 

coordinates  for  axisymmetric  configuration  (see  fig. 1) 

half-jet  height or jet  radius at origin 

mass  fraction  for  specie k @k 
P shock  angle 

Y specific heat ratio 

6 boundary- layer thickness 

E eddy (kinematic)  viscosity; Mach angle,  in  the  appendix 

e flow angle 

P turbulent  viscosity 

P  density 

Subscripts: 

C  centerline 

E external  stream 

J central  jet 

k  refers  to  the  particular  specie; k = 1 for H2, k = 2 for 02, k = 3 for Nz 

ANALY S I S 

Basic Equations 

In the  equations,  the  account of the  turbulence is accomplished by using eddy vis- 
cosity, which is assumed  to be a function of local flow variables and  local  jet  param- 
eters.  The  variables  in  the  equations  are  assumed  to be time  average  quantities. 

Starting with full  equations of motion  in  streamline  coordinates  and  proceeding with 
boundary-layer  simplifications, it is possible  to  derive 
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where  only  the  zero-  and  first-order  terms were retained. In the  equations (1) and (2), 
the  turbulent  viscosity is denoted  by 1.1; P, q, 8, and  p  denote pressure,  velocity, 
flow angle  measured  from X axis, and  density; s and  n are streamline  and  the 
normal-to-the-streamline  coordinates; Y is the radial distance from the axis; and 
J = 0 or 1, depending  on  whether  the  flow is planar  or  axisymmetric.  The first equa- 
tion is the  same as the  usual  boundary-layer  equation.  Considering  the  terms  in this 
equation  to be of zero  order, all terms  in  the  second  equation are of the first order. 
Simultaneous  solution of these  equations would yield  the  solution  accurate  to  the first 
order. However,  the  viscous terms  in the second  equation  were found to  affect  the 
numerical  solution  in  both the inviscid flow field  and  the  mixing  region only to a small  
degree.  Omitting,  therefore,  the  viscous  terms  in the second  equation  reduces it to 

Pq - " 2 ae + ap- 
as an 

Although the simultaneous  solution of the equations (1) and (3) throughout  the flow 
field  does not produce now a uniformly  valid  first-order  solution, it correctly  predicts 
the inviscid  part of the flow. Consequently,  the  viscous  region  does not  have to be nec- 
essarily  small  compared with the  inviscid  region;  also  the  problem of matching of the 
two regions is eliminated. 

Assuming that the  turbulent  Prandtl  and  Schmidt  numbers  are  equal  to one, the 
energy  and  specie  conservation  equations  are 

1 a k =  1, ..., N 
as pq an Pq y an 

where H is the total  enthalpy, H =x hkak + g /2, and hk and a k  are the  specie 

enthalpy  and mass  fraction.  The  continuity  equation is given by 

2 
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q * + p A + p q - + J m s i n O  a ae = O  (6) 
as as an Y 

Denoting the  temperature by T, universal  gas  constant by Ro,  and  the  specie 
molecular  weight by Wk, the  equation of state is given by 

It is possible  to  combine (ref. 3 )  the  momentum  equation (l), the  continuity  equation (6), 
and  the  equation of state (7) to  obtain 

where  the 

by 

spe cifi .c h 1eat C  the  gas  constant R, and  the  velocity of sound c P' 

R = R o  - x 

a re  defined 
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Ignoring  for  the  moment  the  terms  on  the  right  sidc of equation (8), it is seen  that 
when the flow is supersonic, this equation  together  with  equation  (3)  constitute a typical 
hyperbolic  system.  The  terms on the  right  in  equation (8), with  the  exception of the last, 
arise  because of viscous  diffusion.  These  terms  originate  from  purely  parabolic con- 
servation  equations (l), (4),  and  (5). It is, therefore,  seen  that  the  equations are of 
mixed  hyperbolic-  parabolic  character. 

The  Explicit  Method 

The  difference  equations  for  the  parabolic  equations  (4)  and (5) a r e  obtained in  the 
usual way. Written  for  the  point (i, j )  corresponding  to  the ith interval  in s direction 
and jth interval  in  the  n  direction  they are 

J p.  COS ei, H~, j+l  - 
+ 1 Hi, j- 1 (12) 

A s .  . 
1'1 

An. 
1, j 

Ani 
~ - 1  J 

p.  .q. . Yi . 
1,J 1 , J  , J  

Ani . + Ani, j- 
, J  

where Asi  and Ani denote  the  step  sizes  in  the  streamline  and  the  normal  direc- 
tions (fig. 2). In these  equations  viscosity is assumed  to  depend only on streamline 
coordinate. 

, j   , j  

For the  derivatives of P and 6 associated with the  hyperbolic-type  left  sides of 
equations (8) and (3) a typical  hyperbolic  difference  scheme  (ref. 4, p. 262) is used: 
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Figure 2. - Streamline coordinate system. 

The  term V. denotes  the  differenced  right  side of equation (8), 
J 

Ri, j/ wk 
k 

8 

I 



where H' and a' denote  differenced  streamline deri:ratives of H and cr given by 
equations (12) and  (13). It is seen  that 0 is computed from  equations (14) and (15) 
midway  between  the  grid  points;  other  variables are computed at the  grid  points.  For 
the  purpose of the  computation of coefficients  in  the  difference  equations,  values of 0 
at the  grid  points, as well as the  values of other  variables between  the  grid  points, are 
obtained by linear  interpolation. 

In the  axisymmetric  case  the two terms  in equation  (16)  involving  division by y 
become on the axis 

The last terms  in  equations (12) and  (13)  transform on the axis similarly, with q being 
replaced,  respectively, by H and a. On the  axis,  also,  normal  derivatives  must 
vanish s o  that 

and,  since  the flow angle is zero, 

Conditions  (19)  and  (20)  also hold for  the  center  plane  in  the  planar  case. 
The  outer  boundary of the jet is assumed  to be reached when the  deviation  from  the 

uniform  external flow is sufficiently  small.. As the  jet  expands,  additional  points  in  the 
normal  direction are included  in  the  grid.  The  outermost  streamline is assumed  to be 
undisturbed flow. At each  step,  the  equations are solved  in  the  following  sequence: (12), 
(13),  (16), (14), and (15). After  each  advance  in  the  streamline  direction,  the A s  and 
An are  incremented  using  simple  geometry.  For  example, 
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The  equations  being  explicit  there  are two necessary  stability  criteria  to be satisfied. 
One is associated with  parabolic  equations  and one  with the  inviscid  hyperbolic  parts of 
equations  (14)  and  (15) (ref. 4): 

AS . < K  l , J  An? . K =-  1 p. .q. . 

i, 3 
E-li 

1, J 2 

where M is Mach  number. In practice,  in  some  cases,  criterion (21) was not sufficient. 
A more  stringent  requirement was then  imposed,  1/4 > K 2 1/8. 

The Implicit Method 

The  difference  equations are  transformed  into  implicit  form by expressing  the 
derivatives  in the normal  direction  in  terms r>f variables  evaluated at the  advanced  dis- 
tance s. Thus,  equation (12) becomes 

p.  .q. . 
1 , J  1 , J  

Ani . + An. 
, I  1, j- 1 

where, as in  the  explicit  method, p is assumed  to depend  only  on  the  streamline  coor- 
dinate. This leads  to a tridiagonal  system of equations: 

where 

10 
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A. = 1-1. AS i, j 

J 1  
1, j- 1 Yi, j(Ani, j- + An. 1, j ) 1 



Another  tridiagonal  system  results  from  the  equations  for ak 

For  the  solution of systems of equations  (24)  and  (25)  there exists a simple  algorithm 
(ref.  5, p. 14). 

Equation (14) now involves  advanced  values of 8 and q: 

while  equation (15) is unchanged.  The  differenced  derivatives  in  the  streamline  direc- 
tion H' and a!i in  the  identity  (27) are calculated  from  the  solution of systems  of 
equations  (24)  and (25). 

It is possible  to  eliminate 8 from  equations  (15)  and  (26)  to  obtain 
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where 

F. = -  
J 

r 1 

Asi . J 

The unknowns in  equations  (28) a re  P and  q (which appears  in V.); however, P can 
be  eliminated  using the implicitly  differenced  form of momentum  equation (l), 

J 

The  result is a five-diagonal  system of equations. In matrix  notation it is 

- 
Aq =E 

The  elements of matrix x, a are  zero  except  for j - 2 5 k 5 j + 2: j , k  
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"j,j-2 - J j - 1  - E-A 

a j , j - l  = J j J j -1 D.A - E - B  

a = E C - D.B. + GjAj+l - dj 
j , j  j j - 1  J J 

a- J ,  j + l  

a 

= DjCj - Bj+lGj 

j ,  j+2 - ~ + 1  j - C .  G 

where d. is defined by 
3 

and 

The  general  term  for  vector E, b is given by 
j 

13 



Denoting the  lower  boundary  streamline by j, and  the  outer  boundary  streamline by j,, 
it can  be  seen  from  equations (32) and (35) that  elements a and b. must be  modi- 
fied  for j 5 j, + 2  and j 2 j, - 2  in  order  to  satisfy  proper  boundary  conditions. At 
the  outer  boundary  they are evaluated  assuming  that  the  flow  variables  for j > j, a r e  
equal to the  free-stream  values.  The j, is chosen so  that  the flow disturbance  relative 
to  the free stream is small. 

The  treatment of the  lower  boundary is the  same  for  distances X that are less than 

j ,k  J 

the  potential  core  length. Beyond the  potential  core,  identities (17) and (18) must be 
used on the axis, with  q  evaluated at the  advanced  level  in (17). In both, axisymmetric 
and  planar  cases,  the  matrix  coefficients  near  the  center  streamline  are  evaluated  using 
equations (19) and  (20).  The  system of equations (31) was  solved  using  specialized  Gauss 
elimination  method. 

RESULTS AND  DISCUSSION 

I l lustrat ive  Examples 

The  results  were  obtained  for  free,  two-dimensional  jet  mixing  with both matched 
and  unmatched  pressures  and  for two  different  turbulent  viscosity  models. At the  origin 
both  jets  were  assumed  to have  uniform  properties.  The  center jet was hydrogen  with 
P = l .O lXl0  or 3.03X10 newtons  per  square  meter,  M = 1 .67 ,  q = 2220 meters  per 
second,  and  T = 306 K. The  external  stream  was air with P = l . O l X l 0  newtons  per 
square  meter,  M = 2 .48 ,  q = 1630 meters  per  second,  and  T = 1110 K. The  two  turbu- 
lent  viscosities  considered  were  constant  viscosity  and a more  realistic  formulation 
based on Prandtl  kinematic eddy  viscosity  model  (ref. 6, pp. 599 and 607): 

5 5 
5 

for X less  than  the  length of potential  core,  and 

for X greater  than  the  potential  core  length. In the  equation (36) bo. is the width of 
the  mixing zone measured  between  points  where I a l  - alJI = 0 . 1  and 
0 . 1 .  The  mass  fraction a1 designates  the  component  originally  constituting  the  jet 
(hydrogen). This definition of bo. differs  somewhat  from one  given in  reference 6 
where bo. is defined  using  the  velocity  difference.  Mass-fraction  difference  was cho- 

I a l -  “1El = 
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sen  here  because  the  change in composition is clearly  related  to  viscous  effects,  whereas 
the  change  in  velocity  may  be  due  to  inviscid  effects.  The  width  bll2 is measured be- 
tween  the jet centerline  and  the  point  where 1 q - % I = 1/2 I q, - qc I. 

The  value  chosen  for  the  constant  viscosity  case was ,u = 4. 79x1K3  newtons- 
seconds  per  square  meter, which is of the  order of magnitude found in  the  fully  devel- 
oped turbulent  jets. 

The  results  were  obtained  for three cases. In case I the  pressures  were  matched 
and the viscosity was constant.  Case II was calculated with hydrogen pressure three 
times  the  external  stream  pressure  while, as in the first case,  viscosity was constant. 
In  case III pressures  were  matched  and eddy viscosity was calculated  from  equations (36) 
and (37). 

I Figure 3 presents  pressure  profiles at downstream  distances X/YJ = 0.2 (fig. 3(a)); 

- Implicit,  f ine  grid 

a Expl ic i t ,   f ine  gr id 
o Explicit,  coarse g r i d  

""_ Implicit.  coarse  grid 

'r a 

1. 2 
Y a 
\ a 

0- .- - 
e 1. 1 

2 
L 
m 

v7 
a, 

a 
1. 0 

.9 

wyJ Implicit, fine grid ' 

X/Y, = 1.0 Implicit,  coarse  grid ""_ 
-" X/YJ - 3.0 Implicit,  f ine  grid  (a)  Downstream  distance,  X/YJ, 0.2. 

X/YJ = 40 Implicit.  f ine  grid 
""_ U Y J  = 100 Implicit,  f ine  grid 

0 Explicit,  coarse g r i d  

"""-0" 

1 I I I 
0 . 5  1. 0 1.5 2. 0 2.5 3. 0 0 10 20 u) 40 50 

Dimensionless  vertical  distance,  Y/YJ 

(bl Downstream  distance,  X/YJ, 1.0 and  3.0. (c) Downstream  distance,  XIYJ, 40 and 100. 

Figure 3. - Pressure  profi le  for  constant  viscosity.  init ial  pressure  ratio, p p E ,  1. 
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X/YJ = 1 and  3 (fig. 3(b)); X/YJ = 40 and 100 (fig. 3(c)).  The half-jet height YJ was 
assumed  to  be 0.1905 centimeter.  Since  the  pressures were matched  initially,  the  pres- 
sure  waves  noted  in  these  figures are due  to  mixing.  Close  to  the  injector (fig. 3(a)), 
the  pressure  waves are steep;  however,  further  downstream  the wave amplitudes are 
progressively  attenuated  (figs.  3(b)  and  (c)). 

In figure  3  comparison was also  made  between  implicit  and  explicit  solutions,  with 
the  degree of convergence  indicated  in  figures  3(a)  and  (b) by presenting  results com- 
puted for two grid  sizes. It is seen  that  the  convergence of the  implicit  method is good 
except  in  the  narrow  regions  around  the  pressure  peaks.  The  fine  grid  spacing was half 
the  value of the  coarse  grid  spacing  in both  implicit  and  explicit  solutions.  Decreasing 
the  grid  spacing  further was considered  impractical. The actual  mesh  size was varied 
during  the  calculation;  however,  past  the  initial  portion, the number of points  in the 
normal  direction was limited  to 90 for  coarse  grid  and  to 180 for  fine  grid.  The  explicit 
solution at X/YJ = 0.2 (fig. 3(a)) is quite  irregular with oscillatory  behavior  in  the 
hydrogen  region (Y/YJ < 1). In this region  no  particular  improvement could  be  noted by 
using a finer  grid.  However,  further  downstream, as the disturbed  region  propagates, 
the  explicit  solution  approaches a smooth  curve.  Using this method,  the  resolution of 
the  steep  pressure wave in  the air region is furthermore  seen  to  be  superior  to  the  reso- 
lution  obtained  using  the  implicit  method. At a distance of X/YJ = 100 (fig. 3(c))  the 
difference  between  the  explicit  and  implicit  solutions  appears  to be significant on a rela- 
tive  basis  although the absolute  magnitude of the  pressure wave at this distance is small. 
The  agreement  in  the wave speed,  however, is very good. 

Another  indication of the  accuracy of the  implicit  method is presented  in  the  next 
section  where it is applied  to  the  calculation of the inviscid flow field  and  compared with 
the  method of characteristics. 

The  oscillatory  behavior  in  the  explicit  solution was observed  whenever  criteria (21) 
required that A s  << An. This is usually  the  case  in  the  region  close  to  the  injector  exit 
where An must be small  s o  that  steep  pressure  waves could  be resolved.  The  oscilla- 
tion was also  observed  in  the  implicit  solution when A s  << An. In this case,  however, 
there is no restriction on A s  so that in  figure  3  and  in  the  following  figures A s  was 
chosen  equal  to An. 

F’igure 4 presents  profiles of hydrogen mass  fraction  for  several  downstream  dis- 
tances. It is seen that the implicit  solution  follows  the  explicit  closely  and that there is 
only a small  difference between  these  and  the  solution  obtained  using  conventional 
boundary-layer  equations (P held  constant).  It is noted  that the mixing zone is consid- 
erably  narrower  than  the width of the  pressure  field. 

The  results  for  case II, when the jet  pressure is three  times  that of the external 
flow, are shown in  figures  5  and 6. The  mixing  region  assumes a pressure  somewhat 
below  the average, with the  expansion wave moving  in  the  direction of the  central jet and 
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Downstream 

"" "- 
"" 

0 Explicit 
0 Expl ic i t   (P = constant) 

Dimensionless  vertical  distance, Y/Y, 

Figure 4. - Prof i les   o f   hydrogen mass fract ion  constant 
viscosity.  Init ial  pressure  ratio, P,/PE, 1. 

Downstream 

3 n  I 

I., I \ \ "" 

" - 
I 
\ 
\ 

distance, 
x ly J 

0.2 
1.0 
3.0 

"7 
I 

L 

0 .5  1.0  1.5 2.0 2.5 3.0 
Dimensionless  vertical  distance,  Y/YJ 

Figure 5. - Pressure  prof i les.  Constant  viscosity.  Ini t ial  
pressure  ra t io ,  PJ/PE, 3. 
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Dimensionless  vertical  distance. Y/YJ 

Figure 6. - Prof i les of hydrogen  mass  fraction.  Constant  viscosity. 
In i t ia l   p ressure   ra t io ,   PJ /P~,  3. 

the  compression wave moving  in  the  opposite  direction. In figure 6 the  mixing  region is 
displaced  considerably  in  the  direction of the  lower  pressure  external flow. 

Figures 7 and 8 were  obtained  using  equations (36) and (37) for the  eddy  viscosity. 
Physically, this represents a more  realistic  assumption  and is typical of a number of 
available  models  that  attempt  to  correlate  experimental  results.  The  amplitude of the 
pressure waves is much  smaller  in this case,  although, a mild  and  fairly  uniform  pres- 
sure  increase  can  be  noted at X/Y, = 3 .  It is evident  that  the  near  pressure  field is 
very  strongly  dependent on the magnitude of the  viscosity. 
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Figure 7. - Pressure  prof i les.  Prandtl   viscosity.  Ini t ial  
pressure  ratio,  PJ/PE, 1. 
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Figure 9. - Hydrogen  mass-fract ion  distr ibution  along  center 
plane. 
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Figure 9 shows  the  distribution of hydrogen mass  fraction  along  the  center  plane  for 
all three cases.  The  potential  core  length  for  the  Prandtl  viscosity  case is greater  than 
that for  the  constant  viscosity  case  due  to  smaller  viscosity  close  to  the  injection point. 
The  difference  in  the  potential  core  length  and  in  the  rate of hydrogen  concentration  decay 
for  the  unbalanced  pressure  case is mainly due to  the  expansion of the  hydrogen jet. 

Figure 10 illustrates  the  positions of the mixing  zones  for  cases I and 11 as deter- 
mined by 1 and 99 percent hydrogen  boundaries.  Relative  to  the  matched  pressure  case, 
the  mixing zone in the unmatched  pressure  case is displaced  in  the  direction of the  lower 
pressure  external flow. 

>- 6r 
Ini t i a l  

p ressu re  
ratio,, 
p ~ / P ~  

\ 
\ I I 

0 20 40 60 80 I 
Downstream  distance, X/Y, 

100 120  140 

Figure 10. - 1 And  99 percent jet boundaries. 

Comparison  With  the  Literature 

In figures 11 to 14 results  were obtained for  several  axisymmetric  jet  mixing  prob- 
lems  for the  purpose of comparison with the  numerical  method of reference 1. Figurc 11 
presents  pressure  distribution  along  the  centerline  for  free  jet  mixing  assuming  matched 
pressures and a constant  turbulent  viscosity.  The  present  solution  (explicit  method) 
produces  a  much  steeper  pressure peak on the axis. A similar  conclusion is reached 
from  figure 12, which was obtained  for  underexpanded  jet  exhausting  in a ducted  coaxial 
flow assuming  purely  inviscid  interaction. In this  figure,  the  pressure peak at about 
X/YJ = 18 is due to  the  reflection of the  original  compression wave from  the  upper wall. 
Included in  the  figure is the  implicit  solution  computed  for two grid  sizes  and  also the 
solution  obtained  using  the  method of inviscid  rotational  characteristics  presented  in  the 
appendix.  It appears  that a very fine mesh  spacing is required for an  accurate  resolution 
of the  pressure  waves on the axis. There is still a noticeable  departure of the  fine-grid 
implicit  solution  from  the  points  plotted  for  characteristics  solution  around  the  minimum 
pressure point in  the first expansion wave.  However,  the  difference  between  the  char- 
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Figure 11. - Coaxial  air  jets,  axial  pressure  distr ibution. Viscosity, 
2 . 4 9 ~ 1 0 - ~  newton-second per square  meter;  jet  radius, 2.5 cen t i -  
meters.  Init ial   propert ies  of jet: p ressure ,   1 .013~10~  newtons   per  
square  meter;  Mach 2; temperature, 1000 K. Init ial   propert ies  of 
external   f low:  pressure,   1.013~10~  newtons  per  square  meter;  
Mach  3; temperature, 300 K. 

'r 
o Method  of   character ist ics 

""- Ref. 1 
Implici t ,   coarse  grid "- Implic i t ,   f ine  gr id  

Downstream  distance, X/YJ 

Figure 12. - Underexpanded  ducted  jet,   centerl ine  pressure  distr ibu- 
t ion,   inv isc id  case. Jet  conditions:  Mach 2.0; pressure, 5 . 0 6 ~ 1 0 ~  
newtons  per  square  meter;  temperature, 1100 K; gas.  hygrogen; 
jet  radius, 0. 1 centimeter.  External  f low  condit ions:  Mach 3.38; 
pressure,  2.533  newtons  per  square  meter;  temperature,  15W K; 
gas. air; duct   rad ius,  0.376 centimeter. 
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Figure 13. - Underexpanded  ducted jet, pressure  prof i le. 
Downstream  distance, X/Y,, 4.0; inviscid case. 
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Figure 14. - Init ial   region  of  underexpanded  ducted jet. 
Centerl ine  pressure  distr ibution;  viscosity, 2. 1 5 ~ 1 0 - ~  
newton-second  per  square  meter. 

acteristics  solution  and  the  results  obtained  in  reference 1 is even  more  pronounced. 
Unfortunately,  no  information is given in  this  reference on the  degree of convergence of 
the  solution. 

A further  indication of the  accuracy of the  implicit  solution  can be obtained from 
figure 13 where  the  pressure  distribution at X/YJ = 4.0 is compared with the  corre- 
sponding results computed  using  the  method of characteristics. It is seen  that  implicit 
method  tends to smooth  out  the  discontinuous  compression wave at the  outer  boundary of 
the  disturbed  region.  Similar  tendency  was  noticed earlier in  the  discussion  where  im- 
plicit  and  explicit  methods  were  compared. 

Additional  comparison with results  from  reference 1 is made  in  figure 14 which pre- 
sents  the  centerline  pressure  distribution  in  the initial region of underexpanded jet in a 
ducted flow assuming a constant  viscosity. It is difficult  to  explain  the  pressure rise at 
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X/YJ = 1.6,  noted in  the  solution of reference 1 even when considering (in view of results 
in fig.  12) that the  grid  spacing  for th i s  case was perhaps  too  coarse.  Despite  such  poor 
agreement with reference 1 in figure 14,  relatively  small  difference (about 10  percent 
for  the  range of X/YJ covered  in  the  figure) was observed  comparing  the  hydrogen 
mass-  fraction  distributions on the  centerline. 

Comparison With  the Experiment 

In this section,  the  experimental  results  from a recent  study of wall slot  injection 
into a supersonic air stream  (ref. 7) are  compared with the  finite-difference  solution. 
A sketch of the wall slot is presented  in  figure 15. Also  shown  in this figure is the gen- 

Free 
st ream 

a 

Spl i t ter  __ 
Dividing 
streamline 

Wal I 

4 : F k s t r e a m l i n e  

Spl i t ter  
plate-, Div id ing 

Wal I 

Figure 15. - Wall slot jet. Slot height,  1.27 centimeters;  l ip  thickness, 0.0127 centimeters. 

era1 wave pattern  and  the  extent of the boundary  layer  above  the  splitter  plate  for  the 
particular  series of experiments.  The  bottom-wall  boundary  layer was small  compared 
with the  slot  height,  and it did  not  seem  to  affect  appreciably  the wave pattern. In these 
experiments  the  composition of the  jet was air, as was the  composition of the  free 
stream.  The  jet was supersonic with M = 1.98  and  total  temperature 297 K. In the 
free  stream  the  total  pressure  and  temperature  were  ambient with M = 4.19. 

In the  finite  difference  solution,  viscosity was assumed  to be given by 

p = P E  + p' 

where p' was taken  to be of the  order of molecular  viscosity, p' = 0. 744x1V5  newtons- 
seconds  per  square  meter.  The  eddy  viscosity E was assumed  to be given by equations 
(36) and (37) with the  constant  in  equation (36) deleted  and bo. increased by adding a 
constant  equal  to  the  boundary-layer  thickness.  The  computation was also  carried out 
taking E = 0 and,  consequently, p = p' ;  however,  the  difference was very  small.  The 
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Figure 16. - Pressure   d is t r ibu t ion  on bottom  wal l ,   in i t ia l ly   uni form 
external  f low. 

boundary  layer on the bottom wall was not included  in  the  calculation,  and  in  figures  16 
and 17 neither  was  the  boundary  layer  above  the  splitter  plate. 

Figure  16(a)  presents the wall-pressure  distribution for the under-expanded  slot  jet 
with PJ/PE = 1.31  at  the  injection point. For X/YJ < 4.0, the  agreement with the  ex- 
periment is not very good; however, further downstream  the  agreement is much  better. 
At X/YJ about 5.5, in  both  the  theoretical  and  experimental  results,  there is evidence 
of a weak reflection of the  expansion wave from  the  mixing  zone. 

Figure  16(b)  presents  the  wall-static  pressure  distribution  for a higher  initial  pres- 
sure ratio of the two jets, PJ/PE = 2.5. The  contours of the  dividing  streamline  for this 
case  are shown in  figure 17 where  the  experimental  points  were  estimated  from  the 
photographs of reference 7. The agreement with the  experiment is somewhat  better  in 
th i s  case. 

In order  to  explain  the  over-expansion  and  the  higher  apparent wave speed  observed 
in the experimental  results  in  figure  16(a),  the  computation  was  carried out  with the eddy 
viscosity  increased  considerably beyond the  value  originally  assumed. With this large 
viscosity it was possible  to  match  the  experimental wave speed  and  to  obtain  qualitatively 
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Figure 17. - Contour of dividing  streamline, initially uniform  exter- 
nal flow. Initial pressure  ratio, PJ/PE, 2.5. 
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Figure 18. - Assumed velocity distribution  in  bound- 
a r y  layer. 

similar  pressure  distribution.  However,  the  mixing  region  in this case was much  wider 
than  indicated  in  the  schlieren  photographs of reference 7. 

Next,  the  effect of the  boundary  layer  above  the  splitter  plate  was  investigated. It 
was  assumed  that  density  varies  linearly  in  the  boundary  layer as given  by 

6 

which approximately  matches  the  density  variation  in  figure 44 of reference 7. To avoid 
the  transonic  and  the  subsonic  regions  in  the  boundary  layer,  uniform flow  was  assumed 
between  the  wall  and  the  point  where M = 1.5.  The  total  enthalpy  was  assumed  to  be 
uniform  throughout  the  boundary  layer.  The  resulting  velocity  distribution  in  the bound- 
ary  layer is shown in  figure 18. 

It can  be  seen  in figure 19 that in this case  the  static  pressure  distribution  more 
nearly  approximates  the  experimental  data.  The  apparent  discrepancy  in  the wave speed 
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F igu re  19. - Pressure  d is t r ibut ion  on bottom wal l   cons ider ing   bound-  
ary  layer in external flow. In i t ia l   pressure  ra t io ,  1.31. 

that is still present is probably  due to  the  upstream  propagation of the pressure  disturb- 
ance on the  bottom wall through  the  subsonic  portion of the  boundary  layer. 

CONCLUDING REMARKS 

A numerical  procedure has been  developed  for  simultaneous  computation of viscous 
and  inviscid flow fields  resulting  from  the  supersonic  mixing of jets. 

The  procedure  can  use  either  an  explicit or an  implicit  finite  difference  scheme, 
each one having certain  advantages  and  disadvantages.  The  explicit  scheme  sometimes 
produced  an  oscillatory  solution.  The  oscillations  were  noticed  in  cases when the  para- 
bolic  stability  criterion  requires  that  the  streamwise  grid  spacing be much  smaller  than 
the  spacing  in  the  normal  direction.  The  implicit  scheme is generally  free of this be- 
havior;  however, it is found that  the  resolution of the  pressure  waves  generated as a 
result of mixing is not as good. The  tendency is to  smooth  out  the  pressure  gradients 
in  the  region  where  they  are  steep  and,  therefore, to reduce  the  magnitude of the  pres- 
sure  peaks.  The  mixing  process,  however, is found to be insensitive  to  the  degree of 
accuracy with which the  steep  pressure  variations  are  described.  Illustrative  examples 
comprise  jet  mixing with  matched  and  unmatched  static  pressures.  As a limiting  case, 
the  example  for  unmatched  static  pressures  includes flow  computation  for  purely  inviscid 
jets. For this case,  also, the method of inviscid  rotational  characteristics was used. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, September 29,  1971, 
764- 75.  
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APPENDIX - METHOD OF CHARACTERISTICS FOR UNMATCHED-PRESSURE JETS 

The  inviscid  rotational  characteristics  equations  are  derived  in  terms of variables 
P and 0 from  equations (3) and (8) in which the viscous  terms are deleted. For rota- 
tional  flows,  working  with  these  variables is more convenient  than with usual  variables 
q and 8 or Prandtl-Meyer  function  and 0 ,  which necessitate  the  introduction of another 
variable  such as entropy. 

Assuming  that  the data at mesh  points 1 and 2 are known, the  solution  for  point 3 is 
obtained  from 

Y3 - Y1 = (X3 - X1) tan (e1 - E )  (All 

y3 - Y2 = (X3 - X2) tan (e, + c z )  (A2 1 

sin e l  cos e l  sin e l  sin Ol(X3 - X1) 
el  - e3 + (P3 - PI) + J = o  (A3 ) 

y1 p1 COS (e, - e l ) y l  

sin c 2  cos c2 sin c2 sin O2(X3 - X2) 
e3 - e2 + (P3 - 3 )  + J = o  (A41 

y2 p2 COS (e2 + e 2 ) y 2  

where E denotes  the  Mach  angle  and y the  specific  heat  ratio. 
In  the  example  in  figures 12 and 13 the  expansion of the  central  jet  and  the  compres- 

sion of the  outer flow are  determined so  that the  respective  final  pressures and  final 
flow angles  are  the  same.  Since  the  gas is assumed  to be calorically  imperfect,  the 
Prandtl-Meyer  function  for  the  expansion wave cannot be expressed as a function of 
Mach  number only. It is more  direct  to  solve  the  expansion wave  by integrating 0 first, 
since it can  be  expressed as a function of T only: 

where  for  h(T)  and  C  (T) the same  expressions  were  used  as  in  the  finite-difference 
program. In the  expansion  region  pressure  can  also be expressed as a function of T 
by integrating 

P 

P RT 



For the  compression  shock  in  the  external  stream it can be shown,  using  the con- 
servation of mass  and  momentum  in  the  direction  normal  to  the  shock  and  the  equation 
of state, that the following  equation  must  hold: 

where 1 and 2 refer  to  the  upstream  and  downstream  sides of the  shock  and U de- 
notes  the  component of q  normal  to  the  direction of the  shock.  Denoting  the  shock 
angle by p, U1 and U2 are given  by 

(A8 1 

and 

u2 = 

In the  computation  scheme,  initially p must be assumed. Using this value of p, 
T2 is then  iterated  until  equation (A7) is satisfied  within  acceptable  limits.  This  allows 
calculation of O 2  from 

the  density p2 from  the  continuity  equation  across  the  shock, 

P l U l  = P2U2 

and P2 from  the  equation of state, 

In the  expansion  region,  the  integration of equation (A5) gives 8 = B(T) in  tabular 
form.  The  temperature at the  end of expansion is obtained by interpolation  from  this 
table  using O = 0 2 .  Integration of equation (A6) gives now the  pressure at the  end of 
expansion.  This  pressure is compared  with Pa. If the  difference  exceeds a prescribed 
tolerance, a new value of 0 is assumed,  and  the  iteration is continued. 
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Downstream of the initial point  the  treatment of the  shock 
0 is iterated  until the compatibility  condition (A4) is satisfied 
mined from equations (A10) and (A12). 

differs to  the  extent  that 
using 8 and P deter- 

At the interface of the two jets, the  pressure  and flow angle  must  be  the  same on 
both sides,  and  they  must  also  satisfy  the  compatibility  equations: on the  side of the 
outer stream, equation (A3); and on the jet side,  equation (A4). 
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